Trp-His, a vasorelaxant di-peptide, can inhibit extracellular Ca2+ entry to rat vascular smooth muscle cells through blockade of dihydropyridine-like L-type Ca2+ channels.
نویسندگان
چکیده
Our previous findings regarding the biological activities of small peptides revealed that a di-peptide, Trp-His (WH), could play a role in the prevention of vascular lesions, including cell proliferation and atherosclerosis. Its vasoprotective effects could be associated with suppression of the vasocontraction signaling cascade, but the underlying mechanism(s) remains obscure. In this study, we attempted to elucidate the vasoprotective mechanism of WH, in opposing the proliferation of rat vascular smooth muscle cells (VSMCs). In VSMCs from 8 week-old male Wistar rat thoracic aortae, WH evoked a significant dose-dependent anti-proliferation effect, without cytotoxicity. In mitogen-stimulated cell experiments, 300 μM WH inhibited cytosolic Ca(2+) elevation in VSMCs induced by 10 μM angiotensin II (Ang II). Furthermore, WH suppressed extracellular Ca(2+) entry into CaCl(2)-stimulated VSMCs. The biological capacity of WH as an intracellular Ca(2+) ([Ca(2+)](i)) suppressor was also proven when 50 μM Bay K8644 was used to enhance Ca(2+) entry via a voltage-dependent l-type Ca(2+) channel (VDCC) and 300 μM WH elicited a 23% reduction in [Ca(2+)](i). The absence of a reduction of the [Ca(2+)](i) by the mixture of tryptophan and histidine revealed the importance of the peptide backbone in the [Ca(2+)](i) reduction effect. Furthermore, the WH-induced [Ca(2+)](i) reduction was abolished by verapamil, but not by nifedipine, indicating that WH likely binds to an extracellular site of the VDCC at a site similar to that of the dihydropyridine type-Ca(2+) channel blockers.
منابع مشابه
The anti-atherosclerotic di-peptide, Trp-His, inhibits the phosphorylation of voltage-dependent L-type Ca2+ channels in rat vascular smooth muscle cells
Trp-His is the only vasoactive di-peptide known to regulate intracellular Ca(2+) ([Ca(2+)]i) and prevent the onset of atherosclerosis in mice. In this study, we showed that Trp-His reduced the [Ca(2+)]i elevation in phospholipase C-activated vascular smooth muscle cells (VSMCs), while a mixture of the corresponding constituent amino acids did not show significant reduction. Furthermore, Trp-His...
متن کاملGestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors
Objective(s): Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring. Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Materials and Methods: Hypothyroidism was induced in female rats by administ...
متن کاملLow voltage-activated calcium channels in vascular smooth muscle: T-type channels and AVP-stimulated calcium spiking.
An important path of extracellular calcium influx in vascular smooth muscle (VSM) cells is through voltage-activated Ca2+ channels of the plasma membrane. Both high (HVA)- and low (LVA)-voltage-activated Ca2+ currents are present in VSM cells, yet little is known about the relevance of the LVA T-type channels. In this report, we provide molecular evidence for T-type Ca2+ channels in rat arteria...
متن کاملEndothelium-Independent Vasorelaxant Effect of Ligusticum jeholense Root and Rhizoma on Rat Thoracic Aorta.
Ligusticum jeholense has been used as the traditional medicine 'Go-Bon' (Chinese name, Gao-ben) in China and Korea. Considering the increased use of medicinal herbs to treat hypertension, in this study, we aimed to investigate the mechanisms of the vasorelaxation effect caused by L. jeholense. We tested the methanol (MeOH) extract of L. jeholense root and rhizoma for vasorelaxant effects; while...
متن کاملEndothelin-induced increases in vascular smooth muscle Ca2+ do not depend on dihydropyridine-sensitive Ca2+ channels.
Endothelin is a potent mammalian vasoconstrictive peptide with structural homology to cation channel-binding insect toxins. We tested the proposal that this peptide directly activates dihydropyridine-sensitive Ca2+ channels in cultured vascular smooth muscle (VSM) cells. First, we found that cell Ca2+ can be altered in VSM by activation of voltage-operated Ca2+ channels. KCl-induced depolarizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Peptides
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2010